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Bitcoin’s energy hunger has triggered a

passionate debate in academic litera-

ture as well as in the general public

about the energy consumption of cryp-

tocurrencies. Bitcoin is a digital cur-

rency based on a cryptographically

secured distributed ledger and repre-

sents the first and best-known block-

chain application. Its computationally

intensive validation process called

‘‘mining’’ requires specific hardware

and vast amounts of electricity to reach

consensus about ownership and trans-

actions. Depending on the methodol-

ogy and assumptions, energy con-

sumption estimates chart a wide range

of results as depicted in Figure 1. The

methodologies of the estimates have

become more sophisticated over time,

and yet, most studies have focused

exclusively on Bitcoin and thereby

ignored that more than 500 further

mineable coins and tokens exist.1

Beyond Bitcoin

To estimate the energy consumption of

cryptocurrencies beyond Bitcoin, we

resort to a methodology proposed by

Krause and Tolaymat2 that employs

hash rates of cryptocurrency networks

and suitable mining devices. Hash rates

measure the processing power; they

describe the number of attempts per sec-

ond to solve a block in the so-called

‘‘proof-of-work’’ mining process. Table 1

lists the hash-rates of the top 20mineable
Joule 4, 1839–1851
cryptocurrencies by market capitalization

that account for more than 98% of the

total market capitalization. These top 20

use 13 different proof-of-work algo-

rithms. Bitcoin, for instance, uses the

SHA-256 algorithm that allows for mining

with highly specialized, ASIC-based de-

vices, which are considerably more en-

ergy efficient than conventional graphic

processing units (GPUs). GPUs are used,

for instance, to mine Monero that

prevents ASIC-based devices from its

validation process.3 Table 1 lists the effi-

ciency of mining devices that suit the

respective algorithms. Dividing the

network hash rates by efficiencies of min-

ing devices yields the rated power of

each network. Figure 2 illustrates the cu-

mulative market capitalization and rated

power of the top 20 cryptocurrencies:

#1—Bitcoin—accounts for 2/3 of the total

energy demand; #2–20 complement 1/3.

It is important to note that currencies with

ASIC-resistant algorithms consume an

overproportionate amount of energy in

relation to their market capitalization.

As listed in Table 1, RavenCoin, for

instance, accounts for 4.32% of the total

rated power, whereas its market cap

only accounts for 0.06% of the consid-

ered top 20. A second example is Mon-

ero, which became ASIC-resistant after

an update in March 2018. The update

led to an abrupt decrease in the net-

work’s computational power of more

than 80%. After a few days, the hash

rate bounced back to half of the pre-up-

date level as miners switched from ASIC

to less-energy-efficient GPUs.3

In absolute terms, the total energy con-

sumption estimate in Figure 1 appears

rather conservative. Alternative estima-

tion methods (including, e.g., auxiliary

losses in mining facilities) suggest that

the actual energy consumption of Bitcoin

might be higher: Digiconomist,4 for

instance, derives 7.9 gigawatts (GW),

and the Cambridge Bitcoin Electricity

Consumption Index (CBECI)5 states 6.1

GW, whereas we estimate 4.3 GW (all es-

timates with a cutoff date of 03/27/2020;
, September 16, 2020 ª 2020 Elsevier Inc. 1843
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Figure 1. Bitcoin Energy Consumption Estimates 2017–2020

Energy consumption is presented in gigawatt (GW). Details on the underlying methodologies and

date sources can be found in the Supplemental Information and Table S1.
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note: Figure 1 shows monthly averages

for Digiconomist and CBECI). The CBECI

uses a bottom-up approach, whereas

Digiconomist applies a top-down

approach (which has been criticized for

potential overestimating in the past6).

Given that we consistently apply the bot-

tom-up approach of Krause and Tolay-

mat2 to all 20 currencies, potentially

higher absolute numbers would not

impair the relative shares (if we assume

the neglected factors apply to all cur-

rencies equally).

Nonetheless, all energy estimates and

underlying assumptions are subject to

uncertainty. In particular, the selections

and operation of the mining devices

pose a significant challenge given that

the mining industry operates secretively.

Miners may shut down and ramp up

certain devices temporarily as a response

to variations in electricity prices and mar-

ket prices (i.e., when electricity costs

exceed mining revenues, as seen during

coronavirus pandemic when market pri-

ces and hash rates tumbled).7 Including

outdated and unprofitable mining de-

vices in the estimate has been found to
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distort the energy demand estimate and

overvalue the resulting carbon emissions

by a factor of 4.5.8 Here again, potential

changes in absolute numbers would

likely impair the estimates of all crypto-

currencies in a similar manner.

Environmental Impacts

Energy consumption, per se, is not an

issue in the context of climate change.

For instance, clean generation resources,

such as wind and solar, produce energy

without emitting greenhouse gases

(GHG) (which trap heat in the atmosphere

and cause cost—now and for future gen-

erations). Fossil generation resources—

most prominently coal and gas—cause

such GHG emissions. Consequently,

the emission factor of electricity depends

on the constitution of the generation

resource mix, which varies among coun-

tries as well as regions. The relative

energy demand of cryptocurrencies in

Table 1 could beused to roughly estimate

GHG emissions. To derive a profound

estimate of caused GHG emissions,

however, more research is needed into

currency-specific factors such as the

respective footprint of mining operations.
Translating energy consumption into

GHG emissions adds further uncertainty.

Krause and Tolaymat,2 for instance, use

average emission factors of electricity

consumption in several countries to chart

a range of potential results, which vary by

a factor of over 4 between the lowest and

highest values. As miners seek locations

with low electricity prices, other studies

assume high shares of cheap renewable

energy, which results inmuch lower emis-

sions estimates.9 From a power system

perspective, the most accurate approach

would be to consider marginal emission

factors. Mining operations cause an addi-

tional load that activates additional gen-

eration resources. The increase in full-

load hours of certain generation re-

sources may lead to fuel switching effects

and alter local emission intensities.7 As

this approach requires exact mining loca-

tions and load information—which are

extremely hard to get—Stoll et al.10 use

average emission factors as a proxy to

balance the effect of higher emissions at

the margin and mining in regions with

high shares of clean energy.

Conclusions

We show in this Commentary the neces-

sity to broaden the debate on the envi-

ronmental impacts of cryptocurren-

cies—beyond Bitcoin. Irrespective of

the uncertainty in assessing the energy

demand and associated GHG emissions

of cryptocurrencies, our estimate for

understudied currencies underlines the

importance of including these in the

debate. Based on the underlying

algorithms, current hash rates, and

suitable mining devices, we conclude

that Bitcoin accounts for 2/3 of the

total energy consumption, and under-

studied cryptocurrencies represent the

remaining 1/3. Therefore, understudied

currencies add nearly 50% on top of Bit-

coin’s energy hunger, which already

alone may cause considerable environ-

mental damage.10 Including the remain-

ing hundreds of mineable coins and to-

kens, which account for the 1.77%

market capitalization not captured by

the top 20, would further increase the



Table 1. Top 20 Mineable Cryptocurrencies by Market Capitalization on 03/27/2020

# Name Symbol Algorithm Market cap
[USD million]

Market
cap [%]

Hashes/s
(network)

Efficiency (device)
[Hashes/s/W]

Rated power
(network) [kW]

Rated power
(network) [%]

1 Bitcoin BTC SHA-256 122.768 79.69% 1.09E+20 2.53E+10 4.291.366 68.39%

2 Ethereum ETH Ethasha 15.209 9.87% 1.64E+14 2.28E+05 719.087 11.46%

3 Bitcoin
Cash

BCH SHA-256 4.183 2.72% 3.88E+18 2.53E+10 153.374 2.44%

4 Bitcoin SV BSV SHA-256 3.181 2.07% 3.04E+18 2.53E+10 120.077 1.91%

5 Litecoin LTC Scrypt 2.595 1.68% 1.36E+14 8.27E+05 164.796 2.63%

6 Monero XMR RandomXa 864 0.56% 1.27E+09 6.00E+00 210.277 3.35%

7 Dash DASH X11 639 0.41% 4.59E+15 1.23E+08 37.386 0.60%

8 Ethereum
C

ETC Ethasha 597 0.39% 9.87E+12 2.28E+05 43.278 0.69%

9 Zcash ZEC Equihash 310 0.20% 4.42E+09 9.00E+01 49.022 0.78%

10 DogeCoin DOGE Scrypt 229 0.15% 1.30E+14 8.27E+05 157.494 2.51%

11 Bitcoin
Gold

BTG ZHasha 133 0.09% 2.64E+06 0.00E+00 8.949 0.14%

12 Decred DCR Blake 125 0.08% 4.16E+17 1.89E+10 22.013 0.35%

13 RavenCoin RVN X16Rv2a 89 0.06% 3.14E+13 1.16E+05 270.792 4.32%

14 MonaCoin MONA Lyra2REv2 85 0.05% 9.16E+13 1.17E+07 7.844 0.13%

15 Bytom BTM Tensority 61 0.04% 5.30E+08 1.82E+02 2.915 0.05%

16 SiaCoin SC Sia 55 0.04% 5.70E+15 1.22E+09 4.664 0.07%

17 DigiByte DGB SHA-256 53 0.03% 6.60E+16 2.53E+10 2.608 0.04%

18 Horizen ZEN Equihash 48 0.03% 6.86E+08 9.00E+01 7.606 0.12%

19 Komodo KMD Equihash 46 0.03% 6.08E+07 9.00E+01 674 0.01%

20 Bytecoin BCN CryptoNight 43 0.03% 2.33E+08 5.00E+02 467 0.01%

TOTAL – – 151.315 98.23% – – 6.274.688 100%

The table displays the top 20 mineable currencies with their respective algorithms, efficiencies of suitable mining devices, and rated power of the networks. De-

tails on methodology, data, and sources can be found in the Supplemental Information and Tables S2, S3, and S4.
aASIC-resistant algorithms

Figure 2. Cumulative Market Capitalization and Energy Demand of Top 20 Currencies by Market

Capitalization

Data sources: own calculations (see Table 1); values as of 03/27/2020.
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share of energy consumption caused by

cryptocurrencies besides Bitcoin.

Going forward, a holistic understanding

of the environmental impacts may also

help policymakers to set the right rules

for cryptocurrenciesandblockchainappli-

cations ingeneral.Most academic studies

have been focusing not only exclusively

on Bitcoin but also primarily on external-

ities resulting from the energy consump-

tion during the mining process. Although

the use phase predominantly contributes

to the carbon footprint of conventional

data centers,11 this might not apply to

cryptocurrencies given the high price

volatility and technological changes.

Translating the total energy consumption

into carbon emissions, and including
Joule 4, 1839–1851, September 16, 2020 1845
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embedded emissions of mining device

production as well as e-waste,12 would

further complement the picture and

reveal the total environmental damage

caused by cryptocurrencies.

The insights from cryptocurrencies may

alsobe applied to novel blockchain appli-

cations that are rapidly maturing. In the

energy sector, for instance, an increasing

number of blockchain use cases have

emerged, ranging from peer-to-peer en-

ergy trading to the management of car-

bon emissions to mitigate climate

change.13,14Basedon the lessons learned

from cryptocurrencies, however, it is

important to carefully differentiate be-

tween energy-hungry algorithms and en-

ergy-efficient algorithms (e.g., private/

permissioned networks do not need en-

ergy-intense validation processes) and

find the right balance between deep de-

tails and big picture.

SUPPLEMENTAL INFORMATION

Supplemental Information can be

found online at https://doi.org/10.

1016/j.joule.2020.07.013.
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